dominio

Dominio

  En la función que tiene por expresión algebraica y = 2x +1 podemos dar a la variable x el valor que queramos y con ello obtener un correspondiente valor de y. Decimos que en este caso dicha función está definida en todo R (conjunto de los números reales) o bien que su dominio de definición es R.
  Sin embargo la función y = 1/x no permite calcular el correspondiente valor de y para todos los valores de x. En este caso el valor x=0 no puede ser del dominio de la función.
  Si la función es la que a cada alumno/a de 4ºA le asocia la nota del examen que hizo el día 14 de Diciembre, el dominio de dicha función sería el conjunto de alumnos/as de 4ºA que hicieron ese citado examen.

 Se llama dominio de definición de una función f, y se designa por Dom f, al conjunto de valores de x para los cuales existe la función, es decir, para los cuales podemos calcular y = f(x).

1.Obtención del dominio de definición a partir de la gráfica.


dominio gráficamente

  Cuando una función se nos presenta a través de su gráfica, simplemente con proyectar sobre el eje de abscisas dicha gráfica conseguimos el dominio de definición. Ésto es porque cualquier valor de x del dominio tiene su correspondiente imagen y por ello le corresponde un punto de la gráfica; y éste punto es el que al proyectar la misma sobre el eje Ox nos incluye ese valor dentro del dominio.
  En el ejemplo vemos coloreado de azul el dominio (está dibujado un poco más abajo del eje para que sea bien visible la escala del eje de abscisas).
 En este caso tenemos que Dom f = (-infinito, 2) U (2, 7]
 De una manera vulgar, podríamos decir que si aplastámos la gráfica sobre el eje Ox y ésta estuviese manchada de tinta, quedaría manchado sobre el eje justo el dominio de definición de la función f.


2.Obtención del dominio de definición a partir de la expresión algebraica para algunas funciones sencillas.

  Efectivamente nos limitaremos a aprender a calcularlo para algunas funciones sencillas y que utilizaremos a menudo. Éstas son:
FUNCIONES POLINÓMICAS:

  Aquellas cuya expresión algebraica es un polinomio, es decir, las funciones polinómicas, tienen como dominio de definición todo el conjunto de los números reales: R, puesto que a partir de una expresión polinómica, y sustituyendo el valor de x por el número real que hayamos elegido podemos calcular sin ningún problema el número real imagen y. Por ejemplo:

f(x)= 3x5- 8x + 1;   D(f) = R

g(x)= 2x + 3;   D(g) = R

h(x)=½ ;   D(h) = R

FUNCIONES RACIONALES:

  Si la función es racional, esto es que su expresión es un cociente de dos polinomios, nos va a plantear el problema de tener que excluir del dominio las raíces del polinomio denominador. Así pues si el polinomio denominador es Q(x), resolveremos la ecuación Q(x)=0 y obtendremos dichas raíces x1, x2,..., xn, y así tendremos que D(f) = R\{x1, x2,..., xn}. Esto significa que forman el dominio de definición de la función todos los números reales salvo x1, x2,..., xn. Por ejemplo:
I)expresion algebraicaResolvemos la ecuación x2- 9 = 0; y obtenemos x1 = +3  y   x2 = -3.
         Por lo tanto D(f) = R \ {+3, -3}


II)expresión algebraica  Resolvemos la ecuación x2+ 1 = 0; y nos encontramos que no tiene solución. No hemos encontrado valores que anulen el denominador y por lo tanto no tenemos que excluirlos del dominio.
    
        Por lo tanto D(f) = R.

FUNCIONES IRRACIONALES:

  Funciones irracionales son las que vienen expresadas a través de un radical que lleve en su radicando la variable independiente. Si el radical tiene índice impar, entonces el dominio será todo el conjunto R de los números reales porque al elegir cualquier valor de x siempre vamos a poder calcular la raíz de índice impar de la expresión que haya en el radicando. Pero si el radical tiene índice par, para los valores de x que hagan el radicando negativo no existirá la raíz y por tanto no tendrán imagen y según la función irracional mencionada. Veamos el método para conseguir el dominio en este caso a través de unos ejemplos:

I)expresión función irracional    Resolvemos la inecuación x +1 > 0; ==> x > -1;            resolución gráfica inecuación

                                x+1 es una expresión positiva si x pertenece al intervalo [-1, +infinito).
                                   
            Por lo tanto D(f) = [-1, +infinito).


II)expresión función irracionalResolvemos la inecuación x2- 25 > 0; y obtenemos (x + 5)·(x - 5) >0; R nos queda dividido en tres zonas y probamos en cuál de ellas se da que el signo del radicando sea positivo. resolución gráfica inecuación

                                                                                Por lo tanto D(g) = (-infinito, -5] U [+5, +infinito)


III)expresión de función irracionalResolvemos la inecuación x2- 2x - 8 > 0; y obtenemos (x + 2)·(x - 4) >0; Observad que ahora la inecuación se plante con desigualdad estricta, esto es porque el radicando está en un denominador y por lo tanto no puede valer 0.
¿En que se traduce esto? Pues sencillamente en tener que excluir de las zonas donde el radicando sea positivo los extremos -2 y +4.
R nos queda dividido en tres zonas de nuevo y estudiando el signo del radicando obtenemos el dominio:
                                                            D(h) = (-infinito, -2) U (+4, +infinito)     (observad los extremos excluidos).

ACTIVIDADES:

  • Obtén el dominio de definición de las funciónes que se dan representadas gráficamente en la página que encuentras aquí.
  • Calcula el dominio de las funciones que se dan a continuación:
expresiones funciones


transparente
inicio
arriba