Estadística para 3º de E.S.O.

ESTADÍSTICA

 

La ESTADÍSTICA  es la parte de las Matemáticas que tiene por objeto estudiar fenómenos físicos, biológicos, económicos, sociales, etc. , a partir de datos recogidos de numerosas experiencias u observaciones.

 

 

1.      INFORMACIÓN ESTADÍSTICA. CONCEPTOS BÁSICOS.

 

El conjunto de todos los elementos que cumplen una determinada característica y sobre el que se desea obtener información se denomina  población. La población viene representada usualmente por la letra  N.

Cada uno de los elementos que forman la población es un  individuo.

Para recoger información acerca de la población se realiza una  encuesta. Esta recogida de información se hace bien por observación o mediante preguntas.

Por razones de economía, tiempo o necesidad, en Estadística no se trabaja con el total de la población, sino con una parte de la misma.

Una  muestra  es cualquier subconjunto o parte de la población. Esta muestra tiene que ser representativa de toda la población objeto de estudio. Uno de los procesos para elegir de manera adecuada una muestra es el  muestreo aleatorio; en él, todos los elementos de la población tienen la misma probabilidad de ser incluidos en la muestra. El tamaño de la muestra se representa mediante la letra  n.

 

ü       Ejemplos :

 

a)      Población: Socios de un club de tenis ( 500 personas (300 hombres y 200 

          mujeres) ).  N = 500.

          Muestra: 10 % de los socios ( 50 personas (30 hombres y 20 mujeres) ). n = 50.

 

b)      Población: Ciudadanos con derecho a voto  ( 4 millones (2’5 millones hombres

          y 1’5 millones mujeres) ).  N = 4.000.000.

          Muestra: 1 ‰ de la población ( 4.000 personas (2.500 hombres y 1.500

          mujeres) ). n = 4.000.

 

 

2.      VARIABLES ESTADÍSTICAS.

 

Cada uno de los aspectos que se desea conocer acerca de la población se denomina  variable estadística. Las variables estadísticas pueden ser:

 

Ø      Cualitativas: si se pueden observar o leer, pero no se pueden contar o medir. Por ejemplo: color de pelo, lugar de nacimiento, profesión.

 

Ø      Cuantitativas: si se pueden contar o medir. Por ejemplo: número de hermanos, peso, número de discos vendidos, talla.

  

 

   Las variables estadísticas cuantitativas pueden ser discretas o continuas:

 

¨      Una variable estadística cuantitativa es discreta cuando sólo toma un número finito de valores aislados (es decir, se puede contar). Por ejemplo: número de hermanos, número de discos vendidos, número de pulsaciones.

¨      Una variable estadística cuantitativa es continua cuando puede tomar todos los valores posibles de un intervalo (es decir, se puede medir). Por ejemplo: peso, talla, medida del salto de longitud.

 

Los valores de una variable estadística se representan por

 

                                  

Observación:

En algunos textos se habla de caracteres estadísticos cualitativos y cuantitativos, y sólo se consideran variables estadísticas las cuantitativas, es decir las que se pueden medir.

 

3.      FRECUENCIAS ABSOLUTAS Y RELATIVAS. TABLAS ESTADÍSTICAS.

 

Con los datos desordenados obtenidos en la encuesta, se construyen unas tablas ordenadas. Estas tablas recogen el número de individuos que toma los diferentes valores de la variable, son las frecuencias.

 

·        Frecuencia absoluta de un valor de la variable es el número de veces que se repite dicho valor.

La frecuencia absoluta del valor   se representa por   .

La correspondencia que asocia a cada valor de la variable su frecuencia absoluta se llama distribución estadística.

 

·        Frecuencia relativa de un valor de la variable es el cociente entre la frecuencia absoluta del valor y el número total de datos.

La frecuencia relativa del valor    se representa por   , por tanto

 

                                           

 

·        Frecuencia absoluta acumulada de un valor de la variable, , es la suma de las frecuencias absolutas de los valores menores o iguales a    .

La frecuencia absoluta acumulada del valor    se representa por   , así tenemos que

 

                                             

 

   ·        Frecuencia relativa acumulada de un valor de la variable,  , es el cociente entre la frecuencia absoluta acumulada del valor    y el número total de datos.

La frecuencia relativa acumulada del valor    se representa por   , así tenemos que      

 

                                     

 

Para construir las tablas estadísticas formaremos varias columnas: una en la que figuren los valores de la variable, otra de frecuencias absolutas, otra de frecuencias relativas, otra de frecuencias absolutas acumuladas, otra de frecuencias relativas acumuladas y otra de porcentajes.

Si la variable estadística es discreta con un número grande de datos (por ejemplo, número de discos vendidos) o es continua, se realiza un agrupamiento de los datos en intervalos, que en Estadística se denominan clases.

Para realizar un buen agrupamiento debemos tener en cuenta los siguientes puntos:

 

-         Es aconsejable escoger los extremos inferior y superior de cada intervalo de modo que se sitúen en números “redondos”; por ejemplo, múltiplos de 5, de 10, etc.

-         Todas las clases deben tener la misma amplitud.

-         Los puntos medios de cada clase se llaman marcas de clase.

-         El número de clases que debemos formar es de libre elección, pero existe un criterio general que aconseja formar tantas clases como la raíz cuadrada del número total de datos.

 

ü      Ejemplos :

 

1)      En un centro de enseñanza secundaria hay ocho clases de tercero de E.S.O. y se quiere tener una información sobre el número de hermanos de los alumnos.

 

Variable: Número de hermanos del alumno (var. estad. cuantitativa discreta).

Población: Curso de 3º de E.S.O.

Muestra: 30 alumnos seleccionados al azar de las ocho clases.  n = 30.

 

 

 (nº de hermanos)

 (nº de alumnos)

%

0

3

3

3/30

3/30

10

1

9

12

9/30

12/30

30

2

13

25

13/30

25/30

43’33

3

2

27

2/30

27/30

6’66

4

1

28

1/30

28/30

3’33

5

1

29

1/30

29/30

3’33

8

1

30

1/30

30/30 = 1

3’33

 

 30

 

1

 

99’98

 

2)      En un centro de enseñanza secundaria hay ocho clases de tercero de E.S.O. y se quiere tener una información sobre el peso de los alumnos.

Variable: Peso de los alumnos (var. estad. cuantitativa continua).

Población: Curso de 3º de E.S.O.

Muestra: 30 alumnos seleccionados al azar de las ocho clases.  n = 30.

 

 

Datos recogidos:  42, 48, 51, 55, 57, 52, 50, 58, 62, 70, 49, 52, 51, 73, 67, 61, 56, 56, 54, 46, 63, 54, 59, 61, 53, 52, 52, 57, 59, 55.

 

 

Clases

(peso del alumno)

 

(marca de clase)

 

(nº de alumnos)

%

[ 40 , 45 )

42’5

1

1

1/30

1/30

3’33

[ 45 , 50 )

47’5

3

4

3/30

4/30

10

[ 50 , 55 )

52’5

10

14

10/30

14/30

33’33

[ 55 , 60 )

57’5

9

23

9/30

23/30

30

[ 60 , 65 )

62’5

4

27

4/30

27/30

13’33

[ 65 , 70 )

67’5

2

29

2/30

29/30

6’66

[ 70 , 75 ) 

72’5

1

30

1/30

30/30 = 1

3’33

 

 

 30

 

1

 

99’98

 

 

 

3. REPRESENTACIONES GRÁFICAS.

 

La forma más inmediata de hacer comprensible la información estadística es a través de las gráficas estadísticas. La elección de determinada gráfica estadística estará en función del tipo de datos que se manejen en el estudio que se realiza. Los principales tipos de gráficas son los siguientes:

 

Ø      Diagrama de barras y polígono de frecuencias.

 

Se utiliza para representar variables cualitativas o cuantitativas discretos sin agrupar en clases. Para construir el diagrama de barras se representan sobre el eje de abscisas los datos y sobre el eje de ordenadas las frecuencias absolutas. Sobre cada valor de la variable se levanta una barra de longitud igual a la frecuencia absoluta.

Si unimos los extremos de las barras obtenemos el polígono de frecuencias.

 

ü      Ejemplo: Vamos a representar al diagrama de barras asociado a la distribución que clasifica a los alumnos según el número de hermanos       ( ejemplo  1) ).

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ø      Histograma y polígono de frecuencias.

 

Se utiliza para representar variables cuantitativas discretas agrupadas en clases o variables cuantitativas continuas. Para construir el histograma se representan sobre el eje de abscisas los extremos de las clases y sobre el eje de ordenadas las frecuencias absolutas. Se construyen unos rectángulos de base la amplitud de cada clase y de altura la frecuencia absoluta de cada clase.

Si unimos los puntos medios de los lados superiores de cada rectángulo obtenemos el polígono de frecuencias.

 

ü     
Ejemplo:    Vamos a representar el histograma asociado a la distribución que clasifica a los alumnos según su peso en kilogramos ( ejemplo 2) ). 

             

     

 

            

 

 

 

 

 

 

 

 

 

 

 

 

Ø      Diagrama de sectores.

 

Se utiliza para representar fundamentalmente variables cualitativas. Consiste en un círculo dividido en tantos sectores circulares como modalidades tiene la variable. El ángulo central de cada sector ha de ser proporcional a la frecuencia absoluta correspondiente.

Para calcular la medida del ángulo se hace la siguiente operación:    

 

ü      Ejemplo: Se realiza sobre la población y muestra de los ejemplos 1)  2)  el estudio de la variable cualitativa “Autonomía de nacimiento del alumno”.

Vamos a representar mediante un diagrama de sectores la distribución estadística que clasifica a los alumnos según la autonomía de nacimiento.

  

Para el cálculo del ángulo central procedemos así:

 

 

Autonomía

Número de alumnos

Medida

del  ángulo central

 

Andalucía

 

19

 

 

Castilla-La Mancha

 

 

7

 

 

Cataluña

 

 

2

 

 

Galicia

 

 

1

 

 

País Vasco

 

 

1

 

 

 

 

 

El diagrama de sectores asociado sería el siguiente:

 

 
                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.      PARÁMETROS ESTADÍSTICOS.

 

Observación:

  El cálculo de parámetros estadísticos se restringe a las variables estadísticas cuantitativas. No podemos calcular parámetros de variables cualitativas, aunque si podemos hacer sus tablas de frecuencias y representarlas gráficamente.

 

v     MEDIDAS DE CENTRALIZACIÓN.

 

Se llaman medidas de centralización a los parámetros que tienden a situarse hacia el centro del conjunto de datos ordenados. Las medidas de centralización son valores que representan el conjunto de los datos.

Las medidas de centralización más importantes son: la media aritmética, la mediana y la moda.

 

Ø      Media aritmética.

 

La media aritmética de una variable estadística es el cociente entre la suma de todos los valores de la variable y el número de éstos (tamaño muestral). Se representa por  .

Si la variable toma los valores    con frecuencias absolutas   , la media aritmética es:

                       

 

Si los datos están agrupados en clases, se toma para    las marcas de clase.

 

ü      Ejemplos :

 

1)            

 

 

2)             

Ø      Mediana.

 

La mediana de una variable estadística es el valor de la variable que ocupa el lugar central de los datos. Se representa por Me.

Si el número de datos es impar se toma como valor de la mediana el valor central.

Si el número de datos es par se toma como valor de la mediana la media aritmética de los dos valores centrales.

 

ü      Ejemplos :

1)      Me = 2           ( los valores 15º y 16º son  2 )

2)      Me = 57’5      ( los valores 15º y 16º están en la clase [55,60)  )

 

Ø      Moda.

 

La moda de una variable estadística es el valor de la variable que tiene mayor frecuencia absoluta. Se representa por  Mo.

Si los datos están agrupados en clases se toma como valor de la moda la marca de la clase que tiene mayor frecuencia absoluta. Esta clase se llama clase modal.

 

ü      Ejemplos :

 

1)      Mo = 2 .                                                2)   Mo =  [50,55) .

 

v     MEDIDAS DE DISPERSIÓN.

 

Se llaman medidas de dispersión a los parámetros que miden las desviaciones respecto de la media. Las medidas de dispersión amplían la información sobre la distribución de los datos, estableciendo si están más o menos próximos unos de otros.

Las medidas de dispersión más importantes son : el rango o recorrido, la varianza y la desviación típica.

 

Ø      Rango o recorrido.

 

El rango o recorrido de una variable estadística es la diferencia entre el mayor y el menor valor de la variable.

Esta medida tiene el inconveniente de que sólo depende de los valores extremos de la variable.

 

ü      Ejemplos :

 

1)      Rango = 8 – 0 = 8 .                                 2)   Rango = 72’5 – 42’5 = 30 .

 

Ø      Varianza.

 

La varianza de una variable estadística es la media aritmética de los cuadrados de las desviaciones respecto a la media. Se representa por   .

 

 

ü      Ejemplos :

 

1)       .                                                      2)    .

 

Ø      Desviación típica.

 

La desviación típica de una variable estadística es la raíz cuadrada positiva de la varianza. Se representa por   .

 

ü      Ejemplos :

 

1)       .                                                           2)   .